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Fractal Structures in Turbulence 

I t a m a r  P r o e a e e i a  1 

We present a qualitative overview of our work on the issue of fractal structures 
in turbulence. We explain why fully developed turbulence is not space filling 
and describe how its fractal dimension can be estimated theoretically. The 
implications of the fractal nature of turbulence on transport processes like 
turbulent diffusion and on fluctuations in passive scalars are discussed. The 
latter affect wave propagation in turbulent media and these effects are examined. 
In addition we consider clouds in the atmosphere which are claimed to have 
fractal perimeters (or surfaces) and outline the physical reasons for this 
phenomenon. The fractal dimension of clouds is tied to the theory of turbulent 
diffusion and is computed theoretically. Indications of the road ahead are given. 

KEY WORDS:  Fractats; turbulence; passive scalars; clouds; wave 
propagation. 

1. INTRODUCTION 

Turbulent fluid motions and processes that occur in turbulent fluids form 
excellent grounds for testing ideas concerning the role of fractals in physics. 
The turbulent activity (or vorticity) in fully developed turbulence seems to 
concentrate on a fractal. (1-4) Transport processes are sensitive to the fractal 
nature of turbulence.iS-7) In addition other fractal objects appear to form in 
turbulent media. An example is clouds which seem to have fractal 
surfaces. ~8'9) In this paper we present a short review of our work that might 
serve as an introduction to the issue of fractal structures in turbulence. We 
begin in Section 2 with some basic ideas on turbulence and explain why a 
fractal model of turbulence is called for. In Section 3 we discuss why 
turbulence is a fractal and estimate the fractal dimension theoretically. In 
Section 4 we turn to transport processes like turbulent diffusion and to the 
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fractal dimension of clouds. Fluctuations of passive scalars are discussed in 
Section 5. Section 6 offers conclusions and some discussion of the road 
ahead. 

2. TURBULENCE IN BRIEF 

Although in principle one should base the theory of turbulence on the 
equations of fluid mechanics, much of our intuitive understanding of 
turbulence stems from the qualitative approach of Kolmogorov of 1941. <1~ 
The essence of this approach is the idea that a fluid is kept turbulent by 
injecting energy on the macroscopic, or stirring, length scales. On the other 
hand, energy is lost to heat only on the microscopic length scale where the 
effect of viscous dissipation becomes important. Denoting the length scales 
by l 0 and l a ,  respectively, Kolmogorov argued that when the Reynolds 
number is very high, there exists a wide range of length scales l such that 
l d ~ l ~ l o. In this "inertial range" viscous dissipation can be neglected. 
There exists therefore only one parameter which characterizes the system, 
and this is the mean energy flux per unit mass per unit time, a flux which 
persists owing to the cascade of energy from the large length scales to the 
small ones and which results from nonlinear fluid mechanical processes. 
Denoting this parameter by (e), we can use it in dimensional analysis to 
predict the behavior of various quantities of interest. For example, suppose 
that we want to estimate the typical velocity difference across a length scale 
l, 0 l. If this can depend on (e) only (and of course on l itself), dimensional 
considerations dictate the scaling law o I ~ ( e ) 1 / 3 l  ~/3. This shows for example 
the well-known fact that the energy is contained in the larger eddies. 

The simplicity, usefulness, and beauty of this approach are apparent. 
Unfortunately, there are flaws. A striking one arises when one measures the 
correlation function of the fluctuation in the local rate of energy dissipation 
e(r), (e(r + l)e(r)) .  According to the philosophy discussed above, if l is in 
the inertial range, one should expect the correlation function to be propor- 
tional to (e) 2. Experiments <1H3) show, however, that 

(s(r + l) s(r)} = c o n s t ( 8 ) : ( l o / l )  ~ (2.~) 

where 0.5 ~</2 ~ 0.25. The appearance of/~ :/: 0 is related to the phenomenon 
of intermettency and therefore/~ is referred to as the intermittency exponent. 
The existence of dimensionless corrections in the form of algebraic fall off in 
this quantity means of course that dimensionless corrections should be 
expected in quantities like o t and in any other quantity of interest as well. 
Accordingly, dimensional analysis seems to become useless, and the 
simplicity of the Kolmogorov approach can be lost. Here is where the fractal 
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model comes as a remedy. We shall now argue why fractal turbulence is 
consistent with results like (2.1). In the next section we discuss the physics 
that gives rise to fractal turbulence. 

Suppose that turbulence is not space filling but rather concentrates on 
an isotropic fractal of dimension D. Suppose further (for simplicity) that the 
fractal is homogeneous ~1) (rather than probabilistic). Then the probability 
P(l)  that a vector I belongs to the fractal is  (14) P(I) = (I/lo) a-D, where d is the 
Euclidean dimension. Now the dissipation e(r) is caused by viscous 
dampling of motions of size l a. The average (e(r)) will be written therefore 
as (14) 

d-D 02 
~ ( l J l 0 )  v (2.2) 

where v is the viscosity, o d is the velocity difference across an active region 
of size l a, and the factor (la/lo) a - ~  weights the probability that the volume laa 
belongs to the active, fractal region. Contributions to the correlation function 
(e(r) e(r + 1)) can come only from length scales of size l or larger, since only 
eddies of that size correlate points which are a distance l apart. The 
probability that both points r and r + 1 belong to activity of size l ~< l n ~< l 0 is 
,,~(lJlo) a-o.  In adition, when we know that both points r and r + l belong to 
the active region of size l, ,  we have to weight the probability that each point 
separately belongs to activity on size l a. This would give rise to the scaling 
equation 

[ 1 , ] d - D [ [ l d ] a - D  Z12 

l<ln<lo 
(2.3) 

The largest term in the sum is the one for which 1, = 1. Taking this term, (14~ 
and using Eq. (2.2), we find 

(e(r) e(r + l)) = (e)2( lo/ l )a-~ (2.4) 

Comparing with Eq. (2.4) we see that ~ = d -- D. This result, which has been 
obtained originally by Mandelbrot, relates the dimensionless corrections to 
the codimension and shows that the dimensional analysis can be easily 
corrected by taking fractal statistics into account. Thus the approach of 
Kolmogorov should not be discarded, but only modifiedfl 

2 The need to modify the 1941 theory was of course known to Kolmogorov. For a complete 
discussion of the alternative modification based on Kolmogorov's "log normal" model see 
Ref. 15. 
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3. WHY FRACTAL? 

A central question for the physicist is why is turbulence not space 
filling. The answer should be found in the dynamics of vortex tubes. Vortex 
tubes are collections of vorticity lines which at every point r point in the 
direction of the vorticity to, to(r)---V • u(r). As is well known, ~15-17) the 
time-dependent strain tensors of a turbulent fluid stretch vortex tubes. As the 
vortex tubes get stretched the vorticity in the direction of the stretching 
increases randomly in an approximately exponential manner. As long as 
viscosity can be neglected, Kelvin's circulation theorem shows that the cross 
section of the tube must decrease to preserve the circulation: co(0)12(0)-- 
co(t) 12(t), where l is the radius of the tube. This is another way of seeing the 
cascade of energy from large length scales to small ones. Naturally, the 
process of stretching and shrinking of diameter is accompanied by folding on 
all length scales due to convective motions. The central point now t4) is that 
as this process occurs the tubes cannot intersect themselves. This property 
stems directly from Kelvin's circulation theorem as long as viscosity can be 
neglected as argued in Ref. 4. We thus have a rapidly stretched, randomly 
folded tube that is "self-avoiding." Clearly such a tube has zero probability 
to fill space. Thus/1 = d -  D may not be zero. 

This picture can be pushed further to yield an estimate of the fractal 
dimension D. To this end we want to see how the only length scale which is 
available, i.e., the tube diameter, appears in the problem. This is hard in d 
dimensions, but if one cuts the stretched, folded tube with a ( d - 1 ) -  
dimensional surface, one sees the ( d -  1)-dimensional "rings" that the tube 
marks on this surface as it pierces it in and out. Because the "ring" diameter 
is the only length scale available, it has been argued ~4) that the structure of 
rings should be essentially connected so that there would be no average inter- 
"rings" distance. It has been also argued ~4) that the statistics of this structure 
is essentially the same as that of lattice animals (or branched polymers) from 
which one estimates the fractal dimension in (d -1 ) -d imens ions  to be 
2 ( d +  1)/5 in the Flory approximation. In d dimensions one gets D =  
(2a + 7)/5 or 

3 d -  7 
~ , = d - D - -  - -  ( 3 . 1 )  

5 

which is in agreement with/z = 0.4 in three dimensions. If one uses Monte 
Carlo results for lattice animals rather than the Flory approximation one 
bounds p between 0.25 and 0.5 in three dimensions in agreement with 
experiments, t4) Since p must be positive or zero one also interprets Eq. (3.1) 
to mean that /a = 0  in two dimensions, in agreement with numerical 
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simulations. It has been thus suggested that there may be an interesting 
relation between turbulence in d dimensions and branched polymer physics 
in d -  1 dimensions. 

4. TURBULENT DIFFUSION AND THE FRACTAL DIMENSION 
OF CLOUDS 

One reason why turbulence is such an important subject is that the 
atmosphere and the oceans are turbulent media. In these media there occur 
transport processes tlS~ (of contaminants, humidity, etc.). In addition, in these 
media light, radio, and sound waves propagate, and the nature of turbulence 
affects these processes, t19) Wave propagation is considered in Section 5. Here 
we discuss turbulent diffusion and its ramifications. 

1. Diffusion in Fractally Homogeneous Turbulence 

Single particle diffusion in turbulent media does not have universal 
properties, since it is dominated by transport by large eddies which depend 
on the energy injection mechanism, which is not universal. (2~ The 
situation is better for two particles or "relative" turbulent diffusion. Here one 
is interested in interparticle distances. These are not affected by large eddies 
which convect pairs of particles together. They are not affected by very small 
eddies either, since these are poor in energy. Thus interparticle distances are 
mostly affected by eddies of size comparable to them. If the interparticle 
distance is within the inertial range, one can expect to find universal 
behavior. 

Consider two particles which are released initially at points r 1 and r2, 
respectively. (5'6~ Their interparticle distance R, R - - r l - - r 2 ,  will change in 
time owing to the fact that the velocities at position rl and r 2 are not the 
same. Denoting the relative velocity by V(t) we have 

R(0) + ~i V(r) dr (4.1) R(t) 

In isotropic turbulence ( V ( t ) ) = 0 .  Consequently ( R ( t ) ) = ( R ( 0 ) ) .  The 
variance, however, is changing, leading to the turbulent diffusivity ~5'6'2~ 

d(R~) fl dt " = 2  (V(t) .  V( r ) )d r  (4.2) 

We see that in order to understand turbulent diffusion we have to estimate 
time correlation functions of velocity differences across a length scaleR. 
Such estimates have been attempted in Ref. 5. The essence of the argument 

822/36/5-6-I0 
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has been as follows: The correlation (V(t) .  V(z)) is known to be 
nonstationary. We can assert, however, that there exists a function of scaled 
time variables g(x) such that 

[ \ t - -17  
< v ( , )  �9 = < v ( , )  �9 v ( , ) > g  ) (4.3) 

where t R is the typical decay time of velocity differences across a length 
scale R. Substitution in Eq. (4.2) leads to the asymptotic predictions (5) 

d(R 2) ~ t(V(t) �9 V(t))t, t ~ t R (4.4a) 

dt t(V(/) V(t))t~, t >> t R (4.4b) 

As long as one lacks knowledge of g(x) one cannot estimate the turbulent 
diffusivities at all times. One can, however, estimate (V(t) �9 V(t)) and t R . As 
long as R is in the inertial range, the estimate of (V(t) �9 V(t)) is relatively 
easy. Within the "homogeneous fractal model" of turbulence (1'z'5) one finds 

( V ( t )  �9 V( t )~  ~ (/~)2/3 R2/3(R/lo)~/3 (4.5) 

The estimate of t R is given by the guess 

R 
t, ~ V, (4.6) 

where V R is the typical velocity difference across a length scale R. 
The approach presented in Ref. 5 led to the estimates 

I (~)1/3 R4/3 (R ~/6 \-~-0 ] t ~ t R (4.7a) d(R 2) 
dt "~ l ( (.g)l/3 R4/3 ( R ) 2./3 

L-o t ~> t R (4.7b) 

with R = (R 2)1/2(0. 

The results in Eqs. (4.7) agree for p = 0 with the classical "4/3 law" of 
Richardson of 1926. (2~ The corrections due to the fractal nature of 
turbulence are, however, important. In Eq. (4.7b) we have, with p = 0.4, 20% 
correction in the exponent of R. Comparison of Eqs. (4.7) with available 
experiments (5) gave excellent agreement with p of the order of 0.4. The 
results are also in agreement with theoretical estimates by Mori and 
coworkers.(22) 

In order to get the function g(x), and thus obtain the diffusivity at all 
times, one has to invoke fluid mechanical considerations. Such 
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considerations were discussed in Refs. 6 and 7. The main idea there was to 
use projection operator techniques in conjunction with the Navier-Stokes 
equation to derive the form of the correlation function of Eq. (4.3). Within 
stated approximations one obtains a form that pertains to the inertial as well 
as to the viscous subranges of length scales, with intermittency effects taken 
into account. The result was then used to derive differential equations for the 
variance of interparticle distances and thus for the diffusivity. These 
equations can be used to study in detail the effects of the fractal nature of 
turbulence on the diffusion process, as well as to understand the role of 
molecular diffusivity on the apparent dispersion of contaminants in the 
atmosphere. (v) The reader is referred to Refs. 6 and 7 for more details. 

4.2.  The Fractal Dimension of Clouds 

The fact that clouds in the atmosphere have fractal surfaces has been 
established in an experiment published by Lovejoy. (8'23) In Ref. 8, Lovejoy 
describes an investigation of the geometry of satellite- and radar-determined 
cloud and rain areas which vary over six orders of magnitudes of area sizes. 
Pictures of clouds and rain areas of sizes from 1 km 2 to 1.2 • 10 6 km z were 
digitized on an approximately rectangular grid. Then, the area and perimeter 
of the cloud (or rain area) were determined simply by counting the number 
of picture elements and measuring the length of the cloud boundary. The 
area-perimeter relation was found to be well represented by the relation 

P ~ v /A D (4.8) 

with / ~ =  1.35 + 0.05. It can be easilly argued ~ that this scaling law 
shows that the fractal dimension D of the perimeter equals/5. In addition, if 
isotropy is assumed, then the fractal dimension of the surface of clouds is 
D C = 1 + D, i.e., 2.35 • 0.05 in this case. 

The experimental result indicates that clouds and rain areas that span 
many orders of magnitude of size are self-similar. It also indicates that up to 
length scales of 1000km there is no characteristic length scale in the 
turbulent atmosphere. Above 1000 km one expects that the globe's curvature 
would start to influence the self-similarity of the dynamical processes. 

To tie this observation to theory we have to consider the properties of 
structure functions. Structure function arise whenever we consider "passive 
scalars" in the theory of turbulence. A passive scalar is a physical quantity 
which is affected by the turbulent field but does not affect it. Temperature, 

3 Recent experiments show that the scaling obtained by Lovejoy extends to even smaller 
length scales. I thank Bob Cahalan for showing me his experimental results prior to 
publication. 
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humidity, and contaminants are examples. Owing to the randomness of the 
velocity field the passive scalar is a random function of space. Denote a 
passive scalar by 0(r). The structure function S(l) is defined by 

S(l) = ([0(r + l) - 0(r)] z) (4.9) 

where again the average is over many repetitions of the experiment. The 
property of most interest for our purposes is the behavior of S(l) in the limit 
l ~ 0. If  we find 

lim S(1) ~ l 2" (4.10) 
l ~ 0  

with H < 1 we then refer to S(1) as a "nondifferentiable volume to line 
function." It can be shown (9'23) that in (8, x, y, z) space the function 0(r) is 
characterized by a fractal dimension D o = 4 -  H. The surfaces defined by 
8(x, y, z)  = 80 are cuts having fractal dimension 3 - H. A cloud of quantity 
8 would be defined by some fixed value 8r, and therefore if we could find an 
appropriate structure function S(l) for the clouds, we would be able to deter- 
mine the fractal dimensions of clouds as 3 - H. The fractal dimension of the 
perimeter will be accordingly 2 -  H. 

To see the relevant structure function in the case of clouds, suppose that 
the function N(r, t) defines the position of a cloud at time t during one 
realization of turbulent diffusion; N(r, t) is unity when the point r is inside 
the cloud and zero otherwise. Clearly, a boundary to the cloud should be 
defined. (In Lovejoy's experiment the "boundary" was chosen according to 
its temperature). Once a boundary is defined, 

f N(r, t) dr = v (4.11) 

where v is the volume of the cloud which is delineated by the boundary. We 
suppose now that the action of the turbulent velocity field is to distort the 
shape of N(r, t), but not to change its volume (the latter process occurs only 
on the smallest scales due to molecular diffusion). Then the probabilities 
(1 /v )p ( r , t )  that a point r is in the cloud and the joint probability 
( l / v2 )p ( r l ,  r 2, t) that both points r I and r 2 are in the cloud are given by 

p(r, t) = <N(r, t)> 

p(r, ,  r2, t) -= <N(rl, t) N(r2, t)) 

(4.12) 

(4.13) 

where we reiterate that the average is on many repetitions of the experiment. 
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Under the action of the velocity field N(r, t) twists and folds. If it 
generates a fractal we expect to find a nondifferentiable volume to line 
function. This can be conveniently defined by 

S(l, t) = + f dr([N(r + l, t ) - -  N(r, t)] 2 ) (4.14) 

An elementary calculation shows that 

s(l, t)= 211 -e(1, t)] (4.15) 

where 

if P(1, t) = ~ p(r + l, r, t) dr (4.16) 

From the definitions it is clear that P(1 = 0, t) = 1 and f P(l, t) dl = v. From 
Eq. (4o15) we see now that l imt,  o S(l, t) = 0. If we could show that 

S(I, t) z-~~ zn (4.17) 

with H < 1 we would be able to calculate the fractal dimension of the cloud, 
D c = 3 -  H. Notice that if N(r, t) were smooth and regular we would have 
expected S(l, t) ~ l 2 or H = 1. This would have led to D c = 2 and D = 1 for 
the perimeters of clouds. Lovejoy's experiment indicates interesting 
nonanalyticities in the limit S(l ~ O, t). 

At this stage turbulent diffusion comes back to the picture. (9) The 
reason is that P(1, t) is determined by its dynamical equation 

P(l, t) = f P(l', O) Q(I, t I l', O) dl' (4.18) 

Here Q(1, t I 1', 0) is the probability that a pair of diffusing particles that were 
released initially (t = 0) at a vector distance I' apart will find themselves at a 
vector distance 1 apart at time t. This Q function was already discussed by 
Richardson ~2~ (who termed it the "distance-neighbor" function) and was 
later used extensively by Batchelor. (21) Since the mean square dispersion of a 
pair of particles is determined uniquely by the Q function 

(12)t,(t) = f 12Q(I, t l l ' ,  O) dl (4.19) 

the understanding of the small-/limit of P(I, t) [and therefore S(1, t)] depends 
on understanding turbulent diffusion in the small l limit. 
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We have approached the problem by seeking a scaling function form 
for Q.(9) This is facilitated by realizing that Q(l, t ll', 0) goes to T(l, t) in the 
limit l' ~ 0, where T(I, t) is the probability of finding a pair of particles (that 
were released from a point source) at a vector distance I apart at time t. This 
quantity is very likely to obey a differential equation. 

Richardson in 1926 suggested that T(1, t) obeys the differential equation 

ST(l, t) ~ ~3T(l, t) 
c3t c~l [K(I)] c31 (4.20) 

with K(l) = a l  4/3 to account for his "4/3" law for turbulent diffusion. He also 
in a later paper (24) argued that K(l) should be independent of time in order 
that the diffusion should not differ from day to day. As pointed out by 
Batchelor (2~) this argument overlooks the fact that there is an effective origin 
of time t defining the commencement of the diffusion. However, Batchelor 
argued further that K could only be a function of time as K(t) is the 
diffusivity and therefore a statistical average over many repetitions of the 
experiment. Thus Batchelor suggested 

er(t, t) ~ 
~ - K( t )  f f i  " ~ T(I, t) (4.21) 

where K(t)=fl[(12)(t)] 2/3 and (12)(t)= (-~flt) 3. We showed, (9' however, that 
both these equations lead to incorrect predictions for the fractal dimension of 
clouds. Richardson's equation grows clouds whose perimeter has the fractal 
dimension 5/3, whereas Batchelor's equation grows spherical clouds with 
D = 1. Accordingly we suggested the more general equation 

ST(l, t) c3 K(l, t) ST 
c~t -- c31 ~ (l, t) (4.22) 

and allowed K(l, t) to depend on both l and t: 

K(1, t) = Dtal b (4.23) 

We note that the exponents a and b cannot befixed on dimensional grounds 
alone. In fact both Eqs. (4.20) (which is consistent with a = 0) and (4.21) 
(which assumes a = 2) are dimensionally correct. Other choices of a and b 
could be made. Our strategy was therefore to determine a and b by 
demanding consistency with our independent knowledge of the turbulent 
diffusivity as explained in Section 4.1. When done, we found the scaling form 
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of the Q function, substituted it in Eq. (4.18) and found the small l form of 
P(l,  t). When this was used in Eq. (4.15) we found 

H = (4 -- r (4.24) 

and accordingly the fractal dimension of the perimeter of clouds is expected 
to be 

4 r O=2--H=T+g- (4.25) 

Picking the value of/~ according to 0.25 < ~z < 0.5, we see that 

1.37 < D < 1.41 (4.26) 

In excellent agreement with the experiment reported in Ref. 8. 
The observation of the fractal dimension of clouds is a good example to 

the stimulus for theoretical research that can be obtained from experimental 
discoveries of fractal objects. 

5. P A S S I V E  S C A L A R  F L U C T U A T I O N S  A N D  
W A V E  P R O P A G A T I O N  

There exists a variety of wave-propagation phenomena in turbulent 
media. All these processes are sensitive to the nature of the fluctuations of 
passive scalars, in particular of the refractive index and of the temperature. 
Most experiments are analyzed in terms of the structure functions of passive 
scalars and their Fourier transforms. Denoting the value of a passive scalar 0 
at a point r by 0(r), the structure function is written as in Eq. (4.9). The 
corresponding spectral density ~o(X) is defined by 

JT[ sin /j S( l )  = 8zc 1 Kl O~162 K2 dK (5.1) 

Thus the analysis of experiments calls for a knowledge of the scaling 
behavior of the structure functions. When the fractal nature of turbulence is 
not taken into account, one finds the classical result (11'19) for the structure 
function S( l )  ..~ l 2/3 [the "2/3 ( -power)  law"]. We shall see now that this 
result is changed appreciably when the effect of intermittency is included. 

To find the scaling behavior in fully developed, fractally homogeneous 
turbulence, we want to consider fluctuations of linear size l, 0 t. The main 
idea (14'19) is that inhomogeneities of size l appear as the result of fluctuations 
in the fluid velocity across active regions of size I, 0/. There are no 
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inhomogeneities created in the inactive regions of the turbulent medium. 
With this in mind we can write down immediately that the rate of creation of 
(0~) must scale according to 

[~t <02>] ~ [~]. o~o,t (5.2) 

where again ( I / l o ) "  weights the probability to belong to an active region. 
In the inertial range these inhomogeneities then break up to smaller 

scale structures owing to the turbulent cascade to small length scales. This 
subdivision continues until the inhomogeneities disappear because of 
molecular dissipation on a length scale l~. The rate of disappearance, (N), 
can be always written 

<N> = D<(V0)2> (5.3) 

where D is the appropriate diffusion constant. The length scale l~ is found by 
equating the rate of creation (or transfer) to the rate of dissipation at this 
length scale, 

l~ [ T  O ] ~ l~ 2 [ T  o ] (5.4) 

or I '  a ~ D / o r S .  The dissipation length scale for the energy cascade is defined 
similarly by l a = v /ore .  In many applications D ~- v and therefore I '  a ~- l a.  For 
convenience we shall disregard their difference in the following. 

In the steady state situation we can equate the rate of transfer (or 
creation) on scale l with the dissipation on scale l a.  Therefore 

o, 
T o~ _~ <N> (5.5) 

or  

Ol 

In a similar way we can find an expression for o t in terms of (e). Equating 
the energy input on the length scale l o, (e), to the energy transfer, on length 
scale 1 (which only occurs in the active regions), we find 

<~>~ tToJ T (5.7) 
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or  

ot ~ ( e )  1/3 l 1/3 (5 .8 )  

Using Eqs. (5.6) and (5.8) we have 

0~ ~ (N}@} -1/s lZ/3(l/lo) -2"/3 (5.9) 

Remember that 0~ is the square of the passive scalar fluctuations in an active 
region. Next we wish to consider the structure functions So(l ) defined by 
Eq. (4.9). As before, we find the scaling behavior So(l ) by weighting 0~ by 
the probability of finding an active region of size h 

I ~ (5.10) 

as a final form to be used below we write 

so(0= 2'3 [ 1 ].,3 
[-~-0 1 (5.11) 

We see that the structure function contains a universal correction to the 
classical "2/3 ( -power)  law" for passive scalars. It is straightforward now to 
find the', intermittency corrections to the spectral density ~0(K) defined in 
Eq. (5.9). Using Eq. (5.11) we immediately see that 

O0(g) = A C 2 K -11/3 (Kl0) - . / 3  ( 5 , 1 2 )  

where A is a dimensionless constant. In Ref. 14 we have examined the effect 
of intermittency on phenomena like scintillation of light sources, scattering 
of electromagnetic waves, amplitude, and phase fluctuations of sound 
waves, etc. In all cases we found that the effect of p being nonzero are 
significant and should be taken into account. 

6. CONCLUSIONS AND THE ROAD AHEAD 

We have presented a short qualitative review of fractal structures in 
turbulence. We explained why is turbulence a fractal and what are the 
implications of the fractal nature on a variety of processes that occur in 
turbulent media. In addition we considered fractal clouds, and tied their 
existence to the theory of transport processes in the atmosphere. 

In all this we have used the simplest fractal model possible, i.e., the 
model of "homogeneously fractal turbulence." There are experimental 
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indications that this model is too simple. If one considers, for example, 
higher-order velocity structure functions ([u(r + / ) - u ( r ) ]  n) one finds (25) 

systematic deviations of the experimental scaling laws from those predicted 
from this simple model. The reason for that is that turbulence should 

probably be considered as a probabilistic fractal and then various higher- 
order correlation functions appear to scale with their own codimensions. (''26) 

Work on this is in progress and will be reported in the future. 

In addition, very little has been done on the fractal nature of 

nonisotropic turbulent  flows. 4 Almost  all flows of technological importance 

are not isotropic. Elucidating their small-scale structure is a task whose 

importance cannot  be overemphasized, and fractal ideas are likely to play 

important  role. 
Last, but not least, is the area of compressible turbulence and cosmic 

phenomena.  Also here, very little has been done fractalwise and progress is 

likely to be made. 

4 For some interesting recent ideas see Ref. 27. 
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